Oblivious Transfer

CS 598 DH

Today's objectives

Review semi-honest security Introduce oblivious transfer (OT)

Build OT from DDH

See an end-to-end security proof

Two-Party Semi-Honest Security for deterministic functionalities

Let f_{0}, f_{1} be functions. We say that a protocol Π securely computes f_{0}, f_{1} in the presence of a semi-honest adversary if for each party $i \in\{0,1\}$ there exists a polynomial time simulator \mathcal{S}_{i} such that for all inputs x_{0}, x_{1} :
$\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right) \stackrel{c}{=} \mathcal{S}_{i}\left(x_{i}, f_{i}\left(x_{0}, x_{1}\right)\right)$

Semi-honest Security

Three notions of "hard to tell apart"
$X \equiv Y \quad$ Identically distributed
$X \approx Y \quad$ Statistically close
As we increase a parameter, the distributions quickly become close together.
$X \stackrel{c}{=} Y \quad$ Indistinguishable As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.

Oblivious Transfer

1-out-of-2
Oblivious Transfer

Receiver

Receiver

1-out-of-2 OT Ideal Functionality

m_{0}, m_{1}
 $$
b \in\{0,1\}
$$

Receiver

OT is an extremely powerful tool
Given enough OTs, we can build a semi-honest protocol for any computable function

Secure AND

$0, x \quad y$
 OT

Secure AND

$$
\begin{aligned}
& \xrightarrow{0, x} \underset{ }{\longleftrightarrow} \quad y \\
& \text { OT } \\
& y \\
& \left(\left\{\begin{array}{ll}
0 & \text { if } y=0 \\
x & \text { if } y=1
\end{array}\right)=x \wedge y\right.
\end{aligned}
$$

Public Key Encryption Scheme

Generating a key makes a public key, private key pair pk, sk
Anyone with pk can encrypt messages
Only those with sk can decrypt

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key Receiver sends each public key to Sender

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key
Receiver sends each public key to Sender
Sender encrypts one message per key

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key Receiver sends each public key to Sender

Sender encrypts one message per key
Receiver decrypts (only) the desired message

Goal:

Correctness

Semi-honest Security

Goal:

Correctness

Semi-honest Security

$$
\begin{gathered}
\operatorname{View}_{S}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right) \approx \mathcal{S}_{S}\left(m_{0}, m_{1}, \perp\right) \\
\operatorname{View}_{R}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right) \approx \mathcal{S}_{R}\left(b, m_{b}\right)
\end{gathered}
$$

Decisional Diffie-Hellman Assumption

"It is hard to compute logarithms in certain mathematical sets"

Decisional Diffie-Hellman Assumption

"It is hard to compute logarithms in certain mathematical sets"

Let G be a cyclic group of order q with generator g

$$
\begin{aligned}
& \text { Ideal }(\quad): \\
& \quad a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad b \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad c \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{g^{a}, g^{b}, g^{c}\right\}
\end{aligned}
$$

m_{0}, m_{1}

Sender

$$
\begin{aligned}
& a \stackrel{S}{\leftarrow} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\$}{\leftarrow} G
\end{aligned}
$$

Receiver
m_{0}, m_{1}

Sender

$$
\begin{aligned}
& a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a}
\end{aligned}
$$

$$
h_{0}, h_{1}
$$

m_{0}, m_{1}

Sender

$$
h_{0}, h_{1}
$$

$$
\begin{aligned}
& a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\$}{\leftarrow} G
\end{aligned}
$$

Receiver

$$
\begin{aligned}
& r_{0} \stackrel{\$}{\stackrel{\$}{\leftarrow} \mathbb{Z}_{q}} \\
& r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}
\end{aligned}
$$

m_{0}, m_{1}

Sender

$$
h_{0}, h_{1}
$$

$$
\begin{aligned}
& a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\$}{\leftarrow} G
\end{aligned}
$$

$$
\begin{aligned}
& r_{0} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}
\end{aligned}
$$

m_{0}, m_{1}

Sender

$$
h_{0}, h_{1}
$$

$$
\begin{aligned}
& r_{0} \stackrel{\$}{\stackrel{\$}{\leftarrow}} \mathbb{Z}_{q} \\
& r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}
\end{aligned}
$$

m_{0}, m_{1}

$$
a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}
$$

Receiver
Sender $\quad r_{0} \stackrel{\stackrel{\S}{\leftarrow} \mathbb{Z}_{q}}{ } \quad r_{1} \stackrel{\lessgtr}{\leftrightarrows} \mathbb{Z}_{q}$

$\frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}$
m_{0}, m_{1}

$$
\begin{aligned}
& a \stackrel{\$}{\gtrless} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b}{ }^{g} G
\end{aligned}
$$

$$
h_{0}, h_{1}
$$

Sender

$$
\begin{aligned}
& r_{0} \stackrel{\stackrel{8}{\leftarrow} \mathbb{Z}_{q}}{\stackrel{\$}{\leftarrow} \mathbb{Z}_{q}}
\end{aligned}
$$

$$
\xrightarrow{\begin{array}{ll}
g^{r_{0}} \\
h_{0}^{r_{0}} \cdot m_{0}
\end{array}} \begin{aligned}
& h_{1}^{r_{1}} \cdot m_{1}
\end{aligned} \longrightarrow \frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}
$$

Receiver

$$
\frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{\left(g^{a}\right)^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}
$$

m_{0}, m_{1}
$a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$

Receiver
Sender $\quad r_{0} \stackrel{\stackrel{\S}{\leftarrow} \mathbb{Z}_{q}}{ } \quad r_{1} \stackrel{\lessgtr}{\leftrightarrows} \mathbb{Z}_{q}$

$$
\xrightarrow{\begin{array}{ll}
g^{r_{0}} \\
h_{0}^{r_{0}} \cdot m_{0}
\end{array}} \begin{aligned}
& h_{1}^{r_{1}} \cdot m_{1}
\end{aligned} \longrightarrow \frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}
$$

$$
\frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{\left(g^{a}\right)^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{g^{a \cdot r_{b}} \cdot m_{b}}{g^{a \cdot r_{b}}}
$$

m_{0}, m_{1}

$$
\begin{aligned}
& a \stackrel{\$}{\gtrless} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\Phi}{\leftarrow} G
\end{aligned}
$$

$$
h_{0}, h_{1}
$$

Sender

$$
\begin{aligned}
& r_{0} \stackrel{\stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{q}}{\stackrel{\&}{\leftarrow}} \begin{array}{l}
\mathbb{Z}_{q}
\end{array}
\end{aligned}
$$

Receiver

$$
\frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{\left(g^{a}\right)^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{g^{a \cdot r_{b}} \cdot m_{b}}{g^{a \cdot r_{b}}}=m_{b}
$$

m_{0}, m_{1}

$$
a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}
$$

Receiver
Sender $\begin{array}{ll}r_{0} & \stackrel{\S}{\leftarrow} \mathbb{Z}_{q} \\ & r_{1} \\ & \end{array}$

$$
\xrightarrow{\begin{array}{ll}
g^{r_{0}} \\
h_{0}^{r_{0}} \cdot m_{0}
\end{array} h_{1}^{h_{1}^{r_{1}} \cdot m_{1}}} \longrightarrow \frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}
$$

$\operatorname{View}_{S}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right)=\cdots$
m_{0}, m_{1}
$a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$

Receiver
Sender $\quad r_{0} \stackrel{\$ \not \mathbb{Z}_{q}}{ } \quad r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$

$$
\begin{gathered}
\operatorname{View}_{S}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right)=\left\{m_{0}, m_{1}, h_{0}, h_{1}, r_{0}, r_{1}\right\} \\
\bar{\equiv} \\
\mathcal{S}_{S}\left(m_{0}, m_{1}, \perp\right): \\
h_{0}, h_{1}, r_{0}, r_{1} \stackrel{\$}{\leftarrow} G \\
\operatorname{return}\left\{m_{0}, m_{1}, h_{0}, h_{1}, r_{0}, r_{1}\right\}
\end{gathered}
$$

m_{0}, m_{1}

$$
\begin{aligned}
& r_{0} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q} \\
& r_{1} \stackrel{\&}{\&} \mathbb{Z}_{q}
\end{aligned}
$$

Sender $\quad r_{0} \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{q}$

$$
a \stackrel{\$}{\gtrless} \mathbb{Z}_{q}
$$

$$
h_{0}, h_{1}
$$

$$
h_{b} \leftarrow g^{a}
$$

$$
h_{1-b}^{\stackrel{\circ}{\&}} G
$$

$$
\left.\xrightarrow{\begin{array}{ll}
g^{r_{0}} \\
h_{0}^{r_{0}} \cdot m_{0}
\end{array}} \begin{array}{l}
h_{1}^{r_{1}} \cdot m_{1}
\end{array}\right] \frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}
$$

$$
\operatorname{View}_{R}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right)=\left\{b, a, h_{1-b}, g^{r_{0}}, g^{r_{1}}, h_{b}^{r_{b}} \cdot m_{b}, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\right\}
$$

$$
\begin{aligned}
& \mathcal{S}_{R}\left(b, m_{b}\right): \\
& \quad r_{0}, r_{1}, a, k, s \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, g^{a \cdot r_{b}} \cdot m_{b}, g^{s}\right\}
\end{aligned}
$$

m_{0}, m_{1}

$$
\begin{aligned}
& a \stackrel{\$}{\gtrless} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \$^{\&} G
\end{aligned}
$$

$$
\begin{array}{lll}
r_{0} \stackrel{\S}{\stackrel{~}{\gtrless}} \mathbb{Z}_{q} \\
r_{1} \stackrel{\&}{\leftarrow} \\
\end{array}
$$

Sender $\quad r_{0} \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{q}$

$$
h_{0}, h_{1}
$$

$$
\operatorname{View}_{R}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right)=\left\{b, a, h_{1-b}, g^{r_{0}}, g^{r_{1}}, h_{b}^{r_{b}} \cdot m_{b}, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\right\}
$$

$$
\begin{aligned}
& \mathcal{S}_{R}\left(b, m_{b}\right): \\
& \quad r_{0}, r_{1}, a, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, g^{a \cdot r_{b}} \cdot m_{b}, g^{s}\right\}
\end{aligned}
$$

$\operatorname{View}_{R}^{\mathrm{OT}}\left(m_{0}, m_{1}, b\right)=\left\{b, a, h_{1-b}, g^{r_{0}}, g^{r_{1}}, h_{b}^{r_{b}} \cdot m_{b}, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\right\}$
"DDH implies that $h_{1-b}^{r_{1-b}}$ "looks random", and

$$
h_{1-b}^{r_{1-b}} \text { masks message } m_{1-b} "
$$

$$
\begin{aligned}
& \mathcal{S}_{R}\left(b, m_{b}\right): \\
& \quad r_{0}, r_{1}, a, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, g^{a \cdot r_{b}} \cdot m_{b}, g^{s}\right\}
\end{aligned}
$$

$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\Phi}{\leftarrow} G \\
& \text { return }\left\{b, a, h_{1-b}, g^{r_{0}}, g^{r_{1}}, h_{b}^{r_{b}} \cdot m_{b}, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\right\}
\end{aligned}
$$

$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\S}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\Im}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \$ \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\$}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

R's input
$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \$ \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\$}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

R's input

R's randomness
$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\$}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

R's input

R's randomness
S's random messages
$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\mathbb{Z}}{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\S}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

R's input

R's randomness

S's random messages

The message R can decrypt
$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:
WLOG, suppose $b=0$

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \stackrel{\oiint}{\leftarrow} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{b}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

R's input

R's randomness

S's random messages

The message
R cannot decrypt

The message R can decrypt
\qquad
$\operatorname{Hyb0}\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftrightarrows G \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

$$
\operatorname{Hyb1}\left(m_{0}, m_{1}, b\right):
$$

$$
a, r_{0}, r_{1}, k \stackrel{\mathbb{Z}_{q}}{ }
$$

$$
h_{0} \leftarrow g^{a}
$$

$$
h_{1} \leftarrow g^{k}
$$

$$
\text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, h_{1}^{r_{1}} \cdot m_{1}\right\}
$$

$$
\begin{aligned}
& \operatorname{Hyb1}\left(m_{0}, m_{1}, b\right): \\
& \quad a, r_{0}, r_{1}, k \stackrel{\bigotimes}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& \quad \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, h_{1}^{r_{1}} \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb} 2\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k \stackrel{\mathbb{Z}_{q}}{ } \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& \text { mask } \leftarrow h_{1}^{r_{1}} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\} \\
& \quad=
\end{aligned}
$$

$$
\operatorname{Hyb1}\left(m_{0}, m_{1}, b\right):
$$

$$
a, r_{0}, r_{1}, k \stackrel{\mathbb{Z}}{q}
$$

$$
h_{0} \leftarrow g^{a}
$$

$$
h_{1} \leftarrow g^{k}
$$

$$
\text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, h_{1}^{r_{1}} \cdot m_{1}\right\}
$$

$\operatorname{Hyb} 2\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0}, r_{1}, k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& \text { mask } \leftarrow h_{1}^{r_{1}} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Hyb} 2\left(m_{0}, m_{1}, b\right): \\
& \quad a, r_{0}, r_{1}, k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& \text { mask } \leftarrow h_{1}^{r_{1}} \\
& \quad \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\} \\
& \text { Hyb3 }\left(m_{0}, m_{1}, b\right): \\
& \quad a, r_{0}, r_{1}, k \stackrel{\$}{\&} \mathbb{Z}_{q} \\
& \quad h_{0} \leftarrow g^{a} \\
& \quad h_{1} \leftarrow g^{k} \\
& g^{\prime} \leftarrow g^{r_{1}} \\
& \text { mask } \leftarrow g^{k \cdot r_{1}} \\
& \quad \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g_{51}^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb} 3\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0}, r_{1}, k \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& g^{\prime} \leftarrow g^{r_{1}} \\
& \text { mask } \leftarrow g^{k \cdot r_{1}} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb} 3\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0}, r_{1}, \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& g^{\prime} \leftarrow g^{r_{1}} \\
& \text { mask } \leftarrow g^{k \cdot r_{1}} \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb4}\left(m_{0}, m_{1}, b\right)$:
$a, r_{0} \stackrel{\S}{\leftarrow} \mathbb{Z}_{q}$
$h_{0} \leftarrow g^{a}$
$\left\{h_{1}, g^{\prime}\right.$, mask $\} \leftarrow \operatorname{Real}()$
return $\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}\right.$, mask $\left.\cdot m_{1}\right\}$

Decisional Diffie-Hellman Assumption

"It is hard to compute logarithms in certain mathematical sets"

Let G be a cyclic group of order q with generator g

$$
\begin{aligned}
& \text { Ideal }(\quad): \\
& \quad a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad b \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad c \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{g^{a}, g^{b}, g^{c}\right\}
\end{aligned}
$$

$\operatorname{Hyb4}\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \left\{h_{1}, g^{\prime}, \operatorname{mask}\right\} \leftarrow \operatorname{Real}() \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \operatorname{mask} \cdot m_{1}\right\}
\end{aligned}
$$

Real():
$k, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$
return $\left\{g^{k}, g^{r_{1}}, g^{k \cdot r_{1}}\right\}$
$\operatorname{Hyb4}\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \left\{h_{1}, g^{\prime}, \operatorname{mask}\right\} \leftarrow \operatorname{Real}() \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

$\underline{C} \quad[B y D D H]$

$\operatorname{Hyb} 5\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \left\{h_{1}, g^{\prime}, \text { mask }\right\} \leftarrow \text { Ideal }() \\
& \text { return }\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}, \text { mask } \cdot m_{1}\right\}
\end{aligned}
$$

Real():

$k, r_{1} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$
return $\left\{g^{k}, g^{r_{1}}, g^{k \cdot r_{1}}\right\}$

Ideal():
$k, r_{1}, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$
return $\left\{g^{k}, g^{r_{1}}, g^{s}\right\}$
$\operatorname{Hyb5}\left(m_{0}, m_{1}, b\right)$:
$a, r_{0} \stackrel{\&}{\leftarrow} \mathbb{Z}_{q}$
$h_{0} \leftarrow g^{a}$
$\left\{h_{1}, g^{\prime}\right.$, mask $\} \leftarrow \operatorname{Ideal}()$
return $\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}\right.$, mask $\left.\cdot m_{1}\right\}$

Ideal():

$k, r_{1}, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$
return $\left\{g^{k}, g^{r_{1}}, g^{s}\right\}$
$\operatorname{Hyb5}\left(m_{0}, m_{1}, b\right)$:
$a, r_{0} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$
$h_{0} \leftarrow g^{a}$
$\left\{h_{1}, g^{\prime}\right.$, mask $\} \leftarrow$ Ideal ()
return $\left\{b, a, h_{1}, g^{r_{0}}, g^{\prime}, h_{0}^{r_{0}} \cdot m_{0}\right.$, mask $\left.\cdot m_{1}\right\}$

$$
\begin{aligned}
& \text { Ideal(): } \\
& \quad k, r_{1}, s \stackrel{\&}{\gtrless} \mathbb{Z}_{q} \\
& \quad \text { return }\left\{g^{k}, g^{r_{1}}, g^{s}\right\}
\end{aligned}
$$

$\operatorname{Hyb5}\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{乌}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& g^{\prime} \leftarrow g^{r_{1}} \\
& \text { mask } \leftarrow g^{s}
\end{aligned}
$$

$$
\text { return }\left\{b, a, h_{1}, g^{r_{0}}, g_{s_{0}^{\prime}}^{\prime} h_{0}^{r_{0}} \cdot m_{0} \text {, mask } \cdot m_{1}\right\}
$$

$\operatorname{Hyb5}\left(m_{0}, m_{1}, b\right):$

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \leftleftarrows \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& h_{1} \leftarrow g^{k} \\
& g^{\prime} \leftarrow g^{r_{1}} \\
& \text { mask } \leftarrow g^{s}
\end{aligned}
$$

return $\left\{b, a, h_{1}, g^{r_{0}}, g_{g_{9}^{\prime}}^{\prime} h_{0}^{r_{0}} \cdot m_{0}\right.$, mask $\left.\cdot m_{1}\right\}$

Hyb6($\left.m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s} \cdot m_{1}\right\}
\end{aligned}
$$

$=$

$\operatorname{Hyb5}\left(m_{0}, m_{1}, b\right)$:

$$
a, r_{0}, r_{1}, k, s \stackrel{\mathbb{Z}_{q}}{ }
$$

$$
h_{0} \leftarrow g^{a}
$$

$$
h_{1} \leftarrow g^{k}
$$

$$
g^{\prime} \leftarrow g^{r_{1}}
$$

$$
\text { mask } \leftarrow g^{s}
$$

return $\left\{b, a, h_{1}, g^{r_{0}}, g_{e_{0}^{\prime}}^{\prime} h_{0}^{r_{0}} \cdot m_{0}\right.$, mask $\left.\cdot m_{1}\right\}$

Hyb6($\left.m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \$ \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s} \cdot m_{1}\right\}
\end{aligned}
$$

$\operatorname{Hyb6}\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{\mathbb{Z}_{q}}{ } \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s} \cdot m_{1}\right\}
\end{aligned}
$$

= [By one-time-pad]

$\operatorname{Hyb7}\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{\S}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s}\right\}
\end{aligned}
$$

$\operatorname{Hyb} 7\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{\S}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}_{R}\left(b, m_{0}\right): \\
& \quad a, r_{0}, r_{1}, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& \quad h_{0} \leftarrow g^{a} \\
& \quad \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s}\right\}
\end{aligned}
$$

$$
\overline{=}
$$

Hyb7 $\left(m_{0}, m_{1}, b\right)$:

$$
\begin{aligned}
& a, r_{0}, r_{1}, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\
& h_{0} \leftarrow g^{a} \\
& \text { return }\left\{b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s}\right\}
\end{aligned}
$$

Today's objectives

Review semi-honest security Introduce oblivious transfer (OT)

Build OT from DDH

See an end-to-end security proof

