Oblivious Transfer CS 598 DH

Today's objectives

Review semi-honest security

Introduce oblivious transfer (OT)

Build OT from DDH

See an end-to-end security proof

Two-Party Semi-Honest Security for deterministic functionalities

Let f_0, f_1 be functions. We say that a protocol Π securely computes f_0, f_1 in the presence of a semi-honest adversary if for each party $i \in \{0,1\}$ there exists a polynomial time simulator S_i such that for all inputs x_0, x_1 :

$$\operatorname{View}_{i}^{\Pi}(x_{0}, x_{1})$$

 $\stackrel{c}{=} S_{i}(x_{i}, f_{i}(x_{0}, x_{1}))$

Semi-honest Security

Three notions of "hard to tell apart"

- $X \equiv Y$ Identically distributed
- Statistically close $X \approx Y$
- $X \stackrel{c}{=} Y$ Indistinguishable

Output^{Sim}_{Bob} $(x, y) = \{ y, m_0, m_1, ... \}$

As we increase a parameter, the distributions quickly become close together.

As we increase a parameter, it **quickly** becomes difficult for programs to tell the distributions apart.

Oblivious Transfer

1-out-of-2 Oblivious Transfer

b ∈ {0,1}

1-out-of-2 Oblivious Transfer

1-out-of-2 OT Ideal Functionality $b \in \{0, 1\}$ m_0, m_1 Sender

OT is an extremely powerful tool Given enough OTs, we can build a semi-honest protocol for *any* computable function

Secure AND

 \mathbf{V}

Secure AND

Secure AND

Public Key Encryption Scheme

- Generating a key makes a public key, private key pair pk, sk
 - Anyone with pk can encrypt messages
 - Only those with sk can decrypt

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key

Receiver makes two public keys, but only one has a matching private key

Receiver sends each public key to Sender

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key

Receiver sends each public key to Sender

Sender encrypts one message per key

Intuitive Idea for OT

Receiver makes two public keys, but only one has a matching private key

Receiver sends each public key to Sender

Sender encrypts one message per key

Receiver decrypts (only) the desired message

Intuitive Idea for OT

Goal:

Correctness Semi-honest Security

 m_0, m_1 S \mathcal{M}_h

Goal:

Correctness Semi-honest Security $View_S^{OT}(m_0, m_1, k)$ $View_R^{OT}(m_0, m_1)$

 $\operatorname{View}_{S}^{OT}(m_{0}, m_{1}, b) \approx \mathscr{S}_{S}(m_{0}, m_{1}, \bot)$ View^{OT}_R $(m_0, m_1, b) \approx S_R(b, m_b)$

Decisional Diffie-Hellman Assumption

"It is hard to compute logarithms in certain mathematical sets"

Decisional Diffie-Hellman Assumption

Let G be a cyclic group of order q with generator g

Real(): $a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ return $\{g^a, g^b, g^{a \cdot b}\}$

"It is hard to compute logarithms in certain mathematical sets"

Ideal():

$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

 $b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
return $\{g^a, g^b, g^c\}$

 h_0, h_1

 h_0, h_1

 $a \stackrel{\$}{\leftarrow}$

 h_{1-b}

$$h_0, h_1$$

$$g^{r_1}$$

$$h_1^{r_1} \cdot m_1$$

$$h_0, h_1$$

$$g^{r_1}$$

$$h_1^{r_1} \cdot m_1$$

 $h_b^{r_b} \cdot m_b$

 $(g^{r_b})^a$

 $\frac{h_b^{r_b} \cdot m_b}{\left(g^{r_b}\right)^a}$

 $h_b^{r_b} \cdot m_b$ $(g^a)^{r_b} \cdot m_b$ $(g^{r_b})^a$ $\left(g^{r_b}\right)^a$

 $(g^a)^{r_b} \cdot m_b$ $h_b^{r_b} \cdot m_b$ g^{ι} $(g^{r_b})^a$ $(g^{r_b})^a$

$$\begin{array}{ccc} & a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} & b & & \\ & h_{0}, h_{1} & & \\ & h_{b} \leftarrow g^{a} & \\ & h_{1-b} \stackrel{\$}{\leftarrow} G & \\ & & \\ g^{r_{1}} & & \\ & h_{1}^{r_{1}} \cdot m_{1} & \\ &$$

$$a \cdot r_b \cdot m_b$$

$$g^{a\cdot r_b}$$

 $\frac{h_b^{r_b} \cdot m_b}{\left(g^{r_b}\right)^a} = \frac{\left(g^a\right)^{r_b} \cdot m_b}{\left(g^{r_b}\right)^a}$ g^{ι}

$$\frac{a \cdot r_b}{g^{a \cdot r_b}} \cdot m_b = m_b$$

View^{OT}_S(m

$$n_0, m_1, b) = \cdots$$

 $View_{S}^{OT}(m_{0}, m_{1}, b) =$

$$\begin{array}{ccc} & a \stackrel{\$}{\leftarrow} \mathbb{Z}_{q} & b \\ & h_{b} \leftarrow g^{a} \\ & h_{b} \leftarrow g^{a} \\ & h_{1-b} \stackrel{\$}{\leftarrow} G \\ \end{array} & \mathbf{Rece} \\ & g^{r_{1}} \\ & h_{1}^{r_{1}} \cdot m_{1} \end{array} & \frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}} \end{array}$$

$$= \{m_0, m_1, h_0, h_1, r_0, r_1\}$$

 $\mathcal{S}_{S}(m_{0}, m_{1}, \perp)$: $h_0, h_1, r_0, r_1 \stackrel{\$}{\leftarrow} G$ return { $m_0, m_1, h_0, h_1, r_0, r_1$ } 36

 $\mathcal{S}_{R}(b, m_{b})$: r_0, r_1, a, k, s return {

 $\operatorname{View}_{R}^{OT}(m_{0}, m_{1}, b) = \{b, a, h_{1-b}, g^{r_{0}}, g^{r_{1}}, h_{b}^{r_{b}} \cdot m_{b}, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\}$

$$\stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$$

 $b, a, g^{k}, g^{r_{0}}, g^{r_{1}}, g^{a \cdot r_{b}} \cdot m_{b}, g^{s}$

$\text{View}_{R}^{\text{OT}}(m_{0}, m_{1}, b) = \{b, a, h_{1}\}$

 $S_R(b, m_b)$: r_0, r_1, a, k, s return {

$$1-b, g^{r_0}, g^{r_1}, h_b^{r_b} \cdot m_b, h_{1-b}^{r_{1-b}} \cdot m_{1-b} \}$$

$$\stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$$

b, a, g^{k} , $g^{r_{0}}$, $g^{r_{1}}$, $g^{a \cdot r_{b}} \cdot m_{b}$, g^{s} }

$$\text{View}_{R}^{\text{OT}}(m_{0}, m_{1}, b) = \{b, a, \}$$

$h_{1-b}^{r_{1-b}}$ masks message m_{1-b} "

 $\mathcal{S}_{R}(b, m_{b}):$ $r_{0}, r_{1}, a, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$

 $h_{1-b}, g^{r_0}, g^{r_1}, h_b^{r_b} \cdot m_b, h_{1-b}^{r_{1-b}} \cdot m_{1-b}$

return $\{b, a, g^k, g^{r_0}, g^{r_1}, g^{a \cdot r_b} \cdot m_b, g^s\}$

Hyb0(
$$m_0, m_1, b$$
):
 $a, r_0, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_b \leftarrow g^a$
 $h_{1-b} \stackrel{\$}{\leftarrow} G$
return $\{b, a, h_{1-b}\}$

 $\{1-b, g^{r_0}, g^{r_1}, h_b^{r_b} \cdot m_b, h_{1-b}^{r_{1-b}} \cdot m_{1-b}\}$

Hyb0(
$$m_0, m_1, b$$
):
 $a, r_0, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \stackrel{\leftarrow}{\leftarrow} g^a$
 $h_1 \stackrel{\$}{\leftarrow} G$
return $\{b, a, h_1, d^n\}$

$\{b, a, h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_b, h_1^{r_1} \cdot m_1\}$

Hyb0(m_0, m_1, b): $a, r_0, r_1 \leftarrow \mathbb{Z}_q$ $\begin{array}{c} h_0 \leftarrow g^a \\ h_1 \stackrel{\$}{\leftarrow} G \end{array}$ R's input

return $\{b, a, h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_b, h_1^{r_1} \cdot m_1\}$

R's randomness

WLOG, suppose b = 0

return $\{b, a, h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_b, h_1^{r_1} \cdot m_1\}$

return $\{b, a, h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_b, h_1^{r_1} \cdot m_1\}$ out R's randomness S's random messages

WLOG, suppose b = 0

Hyb0(
$$m_0, m_1, b$$
):
 $a, r_0, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \stackrel{\leftarrow}{\leftarrow} g^a$
 $h_1 \stackrel{\$}{\leftarrow} G$
return $\{b, a, h_1, d^a\}$

Hyb1(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
return $\{b, a, h_1, g^r\}$

 $\{b, a, h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, h_1^{r_1} \cdot m_1\}$

$$\{s^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, h_1^{r_1} \cdot m_1\}$$

Hyb1(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
return $\{b, a, h_1, g\}$

$$\{g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, h_1^{r_1} \cdot m_1\}$$

Hyb2(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
mask $\leftarrow h_1^{r_1}$
return $\{b, a, h_1, g\}$

Hyb2(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
mask $\leftarrow h_1^{r_1}$
return $\{b, a, h_1, ...\}$

 $h_1, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1$

Hyb2(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
mask $\leftarrow h_1^{r_1}$
return $\{b, a, h_1, d\}$

Hyb3(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
 $g' \leftarrow g^{r_1}$
mask $\leftarrow g^{k \cdot r_1}$
return $\{b, a, h_1, g^r\}$

$, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1 \}$

$$\{s_{51}^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$$

Hyb3(m_0, m_1, b): $a, r_0, r_1, k \leftarrow \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $h_1 \leftarrow g^k$ $g' \leftarrow g^{r_1}$ mask $\leftarrow g^{k \cdot r_1}$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Hyb3(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
 $g' \leftarrow g^{r_1}$
mask $\leftarrow g^{k \cdot r_1}$

return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Hyb4(
$$m_0, m_1, b$$
):
 $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
{ h_1, g', mask } \leftarrow Real()
return { $b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot$

Real():

$$k, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

return $\{g^k, g^{r_1}, g^{k \cdot r_1}\}$

 m_1 }

Decisional Diffie-Hellman Assumption

Let G be a cyclic group of order q with generator g

Real(): $a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ return $\{g^a, g^b, g^{a \cdot b}\}$

"It is hard to compute logarithms in certain mathematical sets"

Ideal():

$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

 $b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
return $\{g^a, g^b, g^c\}$

Hyb4(m_0, m_1, b): $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $\{h_1, g', \text{mask}\} \leftarrow \text{Real}()$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Real(): $k, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ return $\{g^{k}, g^{r_{1}}, g^{k \cdot r_{1}}\}$

Hyb4(m_0, m_1, b): $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $\{h_1, g', \text{mask}\} \leftarrow \text{Real()}$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$ $\frac{C}{[By DDH]}$ Hyb5(m_0, m_1, b): $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $\{h_1, g', \text{mask}\} \leftarrow \text{Ideal()}$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Real(): $k, r_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ return $\{g^{k}, g^{r_{1}}, g^{k \cdot r_{1}}\}$

Ideal(): $k, r_1, s \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ return $\{g^k, g^{r_1}, g^s\}$

Hyb5(m_0, m_1, b): $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $\{h_1, g', \text{mask}\} \leftarrow \text{Ideal()}$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Ideal(): $k, r_1, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ return $\{g^{k}, g^{r_{1}}, g^{s}\}$

Hyb5(m_0, m_1, b): $a, r_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $h_0 \leftarrow g^a$ $\{h_1, g', \text{mask}\} \leftarrow \text{Ideal()}$ return $\{b, a, h_1, g^{r_0}, g', h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

$$\begin{aligned} \mathsf{Hyb5}(m_0, m_1, b): \\ a, r_0, r_1, k, s &\stackrel{\$}{\leftarrow} \mathbb{Z}_q \\ h_0 \leftarrow g^a \\ h_1 \leftarrow g^k \\ g' \leftarrow g^{r_1} \\ \mathrm{mask} \leftarrow g^s \\ \mathsf{return} \quad \{b, a, h_1, g^r\} \end{aligned}$$

Ideal(): $k, r_1, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ return $\{g^{k}, g^{r_{1}}, g^{s}\}$

 $\{r_{0}, g', h_{0}^{r_{0}} \cdot m_{0}, \text{mask} \cdot m_{1}\}$

Hyb5(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
 $g' \leftarrow g^{r_1}$
mask $\leftarrow g^s$
return $\{b, a, h_1, g^{r_0}, g'_{59} h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1\}$

Hyb6(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return { b, a, g^k, g^{r_0}

Hyb5(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
 $h_1 \leftarrow g^k$
 $g' \leftarrow g^{r_1}$
mask $\leftarrow g^s$
return { b, a, h_1, g

 $x_{0}, g^{r_{1}}, h_{0}^{r_{0}} \cdot m_{0}, g^{s} \cdot m_{1}\}$

 $, h_1, g^{r_0}, g'_{,0}, h_0^{r_0} \cdot m_0, \text{mask} \cdot m_1 \}$

Hyb6(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return { b, a, g^k, g^{r_0}

$\{s^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, g^s \cdot m_1\}$

Hyb6(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return $\{b, a, g^k, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, g^s \cdot m_1\}$
 $=$ [By one-time-pad]

Hyb7(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return $\{b, a, g^k, g^{r_0}, g^r\}$

$$g^{r_1}, h_0^{r_0} \cdot m_0, g^s$$

Hyb7(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \leftarrow \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return $\{b, a, g^k, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, g^s\}$

$$\begin{split} \mathcal{S}_{R}(b,m_{0}):\\ a,r_{0},r_{1},k,s &\stackrel{\$}{\leftarrow} \mathbb{Z}_{q} \\ h_{0} \leftarrow g^{a} \\ \texttt{return} \ \{b,a,g^{k},g^{r_{0}},g^{r_{1}},h_{0}^{r_{0}}\cdot m_{0},g^{s}\} \end{split}$$

Hyb7(
$$m_0, m_1, b$$
):
 $a, r_0, r_1, k, s \leftarrow \mathbb{Z}_q$
 $h_0 \leftarrow g^a$
return $\{b, a, g^k, g^{r_0}, g^{r_1}, h_0^{r_0} \cdot m_0, g^s\}$

Today's objectives

Review semi-honest security

Introduce oblivious transfer (OT)

Build OT from DDH

See an end-to-end security proof